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A convenient method to prepare a series of benzodithiine derivatives was developed, via the synthesis of
cyclic disulfide building blocks containing an amino-group linker. Some of the novel cyclic disulfide com-
pounds are shown to modulate the activity of the redox-enzyme glutathione reductase.
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The redox activities of cyclic disulfides and their reactivity with
thiols and relative redox potentials have been the subject of de-
tailed physico-chemical studies.1 More recently, the utility of the
cyclic disulfide group has found interest in a variety of applica-
tions. For example, cyclic disulfides have been used to serve as a
bridging molecule between a gold layer and a single-walled carbon
nanotube through a thioalkylthiol linkage2, to attach an oligonu-
cleotide to a gold nanoparticle providing increased stability3, or
as a linker to connect folic acid to gold nanoparticles for potential
use as drug delivery vehicles.4 Although the role of the dithiolane
a-lipoic acid in biological processes is well established, the study
of synthetic cyclic disulfides remains largely unexplored. Recent
examples include the unsubstituted benzodithiine 4 (NO2 replaced
by H), which inhibits Respiratory Syncytial Virus replication5 and
oxidized dithiothreitol, which interferes with HIV-replication by
ejecting zinc from Zinc-finger protein via interaction with active-
site sulfhydryl groups.6

In view of the above, a systematic exploration of a broader
range of compounds containing cyclic disulfide building blocks
could prove interesting. Although various non-cyclic disulfide
compounds have been demonstrated to interact with active-site
cysteine residues of a number of proteins7, they are prone to intra-
cellular reductive inactivation. The 1,4-dihydro-benzo[d][1,2]dithi-
ines have a much more negative reduction potential than linear
disulfides1, which provides increased stability. Therefore, we se-
lected the benzodithiines for further exploration. The most conve-
nient way to potentially synthesize a wide variety of cyclic
disulfide derivatives would be via a benzodithiine core that has a
handle for further derivatization. We now present the synthesis
of substituted 1,4-dihydro-benzo[d][1,2]dithiines that contain an
amino group as a linking unit. These novel building blocks have
been reacted with various electrophilic compounds and prelimin-
ary studies of their potential biological activity have been carried
ll rights reserved.

2; fax: +1 787 767 2796.
.

out via investigation of their potential for modulation of the re-
dox-enzyme glutathione reductase.

A general synthetic scheme is provided in Figure 1. Starting
with either 3- or 4-nitro substituted ortho-xylene, both 5-amino-
and 6-amino substituted benzodithiine derivatives 6 were synthe-
sized, respectively. In the first step, the nitroxylene 1 is brominated
with bromine in a biphasic methylene chloride/water mixture,
from which the a,a0-dibromide 2 can be isolated and purified via
a single crystallization. Nucleophilic substitution with potassium
thioacetate in methanol provides bis-thioacetate 3. Direct hydroly-
sis of 3 with sodium hydroxide in different solvents led to insoluble
products, most likely polymeric polysulfides. However, when the
hydrolysis was carried out with ammonium hydroxide in high
dilution (0.01 M) in methanol, concomitant air oxidation provided
the cyclic disulfide 4 in good yields.8,9 A last challenge was to re-
duce the nitro-group of compound 4 to an amino group, while
maintaining the reduction-prone cyclic disulfide group intact.
Reducing agents such as Fe/HCl, Zn/H2NNH2, Ni/HCOOH, or Pd/C/
H2, either did not react, or provided a mixture of unidentified or
polymeric products. However, reduction with sodium dithionite
successfully provided the desired amino-substituted dihydroben-
zodithiins 5.12 Subsequently, the amino group could be reacted
2
CH3OH4 (84%) 5 (40%) 6 (29-76%)

Figure 1. Synthesis of cyclic disulfides depicted in Table 1. In brackets: yields for 6-
substituted derivatives.



Table 1
Preparation of benzodithiine derivatives and their effects on glutathione reductase activity

Entry Electrophile Producta Yield (%) % Enzyme activity at 50 lMc % Enzyme activity at 25 lMc

1 O
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O

7

76 144.5 ± 13.3 90.5 ± 6.5

2 O
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S
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67 18.5 ± 1.9 46.9 ± 5.2

3 O
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45 59.4 ± 14.7 72.7 ± 9.8
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55 66.0 ± 2.5 91.0 ± 4.4
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93 90.5 ± 6.9 91.3 ± 15.1

6 O

O
Br S

SN
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O

O 12

35 100.0 ± 11.9 101.8 ± 6.2

7b

NCl

Cl S
SHN

NCl
13

29 90.4 ± 7.7 76.2 ± 4.2

a The products were formed by adding the electrophile to a solution of 5- or 6-amino-benzodithiine at 0 �C in THF in the presence of 1.2 equiv triethyl amine.
b The product was obtained via CuI/N,N-dimethylglycine/Cs2CO3 catalyzed amination reaction in DMSO15 with microwave heating to 120 �C for 1 h.
c Activity of yeast glutathione reductase compared with vehicle [activity = 100%] (for method used see Ref. 16).
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with a number of electrophilic compounds to provide derivatives 6.
The products synthesized are summarized in Table 1.

In order to provide a preliminary investigation of their biologi-
cal potential, the interaction of the new cyclic disulfide compounds
7–13 with commercially available yeast glutathione reductase was
investigated. The redox-enzyme glutathione reductase is responsi-
ble for the reduction of oxidized glutathione (GSSG) to two mole-
cules of reduced glutathione (GSH), with NADPH as the co-
reductant (Fig. 2). The enzyme maintains GSH concentrations,
and possible inhibitors of this enzyme have been indicated as po-
tential anti-malarial13 or anti-cancer agents.14 A reversible
GS-SG + NADPH + H+

glutathione
reductase

2 GS-H + NADP+

Figure 2. Reaction catalyzed by glutathione reductase.
dithiol-disulfide couple, formed by two active-site cysteine resi-
dues provides the key-functionality in the oxidation–reduction
process. Based on the reactivity of thiols with disulfides, our novel
benzodithiine derivatives seem especially suitable for enzyme
modulation, and are intended to be able to interact with the ac-
tive-site sulfhydryl groups of the enzyme (Fig. 3). Depending on
enzyme kinetics, the benzodithiines could prove to be reversible
covalent inhibitors, or alternatively function as competitive sub-
strates, leading to dithiol products. Although an extensive pharma-
cological study is beyond the scope of the present Letter, a proof-
of-principle for the structure-dependent activity of benzodithiine
derivatives to serve as modulators of cysteine-containing redox en-
zymes was evidenced by their effect on yeast glutathione reduc-
tase. The interference with enzymatic activity of the novel
benzodithiine products is summarized in Table 1.

As can be seen from Table 1, at a concentration of 50 lM, three
compounds (8–10) reduce the activity of yeast glutathione reduc-
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Figure 3. Possible interaction of benzodithiine derivatives with the active-site cysteine residues of glutathione reductase.
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tase to 19%, 59%, and 66%, respectively, compared with the baseline
enzymatic activity. Thus, at this concentration, compound 8 inhib-
its more than 80% of enzyme activity, as measured by NADPH con-
sumption. At a concentration of 25 lM, as can be expected, the
effect of all three compounds on enzyme activity is much reduced.
Nevertheless, even at this reduced concentration, compound 8
shows an enzyme inhibitory activity of about 50%. For comparison,
a bis-dithiocarbamate18 was recently revealed as a covalent irre-
versible inhibitor of yeast glutathione reductase with Ki = 56 lM
and kinact = 0.1 min�1.

In contrast to the above compounds, at both 25 and 50 lM con-
centrations, the modulatory effect of compounds 11 and 12 on en-
zyme activity is only moderate at most. These data indicate that
the observed effects are not only the result of interaction with
the cyclic disulfide group, but are also indeed dependent on the
complete molecular architecture of the modulating compounds.
Interestingly, at a concentration of 50 lM, compound 7 seems to
exhibit an increase in activity of glutathione reductase, as mea-
sured by an increased rate of NADPH consumption.19 A similar in-
crease in NADPH consumption was observed in the interaction of
human glutathione reductase with either ajoene (50% inhibition
within 15 min. at 200 lM)21 or with fluoro-M5 (IC50 = 4.1 lM).22

These compounds, respectively, thioalkylate or alkylate an active-
site cysteine residue of the enzyme, thereby inhibit the reduction
of GSSG to GSH. Nevertheless, the covalently inhibited enzyme
shows an increased NADPH-oxidase activity, with a faster turnover
of NADPH than in the non-inhibited enzyme. In this case the sub-
strate is not GSSG, but rather, either molecular oxygen or a naph-
thoquinone derivative, that presumably binds to a second,
unidentified binding site. We suggest that the observed increased
activity of compound 7, when compared to enzyme activity in
the absence of 7, is due to a similar increase in oxidase activity,
leading to the observed NADPH consumption.23

In summary, we have developed a procedure for the easy gener-
ation of a library of cyclic disulfides, via the preparation of amino-
benzodithiine building blocks. These can easily be connected to a
variety of electrophiles, some examples of which have been pre-
sented. Potential applications of the presented, and of other benzo-
dithiine derivatives, could be in the fields of nanotechnology, as
well as in the modulation of redox enzymes. Some of the examples
prepared have been shown to interact with glutathione reductase.
Possible interactions of other compounds with this novel pharma-
cophoric group, targeted to other enzymes with active-site cys-
teine residues will be investigated.
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